Overview
Publication
Methods Mol Biol. 2016; 1415(NA):225-43.
PubMed ID: 27115636
Title
Promises and pitfalls of high-throughput biological assays
Authors
Finak G, Gottardo R
Abstract
This chapter discusses some of the pitfalls encountered when performing biomedical research involving high-throughput ""omics"" data and presents some strategies and guidelines that researchers should follow when undertaking such studies. We discuss common errors in experimental design and data analysis that lead to irreproducible and non-replicable research and provide some guidelines to avoid these common mistakes so that researchers may have confidence in study outcomes, even if the results are negative. We discuss the importance of ranking and prespecifying hypotheses, performing power analysis, careful experimental design, and preplanning of statistical analyses in order to avoid the ""fishing expedition"" data analysis strategy, which is doomed to fail. The impact of multiple testing on false-positive rates is discussed, particularly in the context of the analysis of high-throughput data, and methods to correct for it are presented, as well as approaches to detect and correct for experimental biases and batch effects, which often plague high-throughput assays. We highlight the importance of sharing data and analysis code to facilitate reproducibility and present tools and software that are appropriate for this purpose.
With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.
Sign in to see full information about this publication and to download study data when available.
Related Studies
No related studies