Sign in or register to see full information and data.

Publications / Struwe 2017 (ACS Chem Biol)

Overview

Publication

ACS Chem Biol. 2017 Feb 17; 12(2):357-361.

PubMed ID: 27984693

Title

Global N-glycan ste occupancy of HIV-1 gp120 by metabolic engineering and high-resolution intact mass spectrometry

Authors

Struwe WB, Stuckmann A, Behrens AJ, Pagel K, Crispin M

Abstract

A vital step in HIV vaccine development strategies has been the observation that some infected individuals generate broadly neutralizing antibodies that target the glycans on the surface of HIV-1 gp120. These antibodies target glycan epitopes on viral envelope spikes, and yet the positions and degree of occupancy of glycosylation sites is diverse. Therefore, there is a need to understand glycosylation occupancy on recombinant immunogens. The sheer number of potential glycosylation sites and degree of chemical heterogeneity impedes assessing the global sequon occupancy of gp120 glycoforms. Here, we trap the glycan processing of recombinant gp120 to generate homogeneous glycoforms, facilitating occupancy assessment by intact mass spectrometry. We show that gp120 monomers of the BG505 strain contain either fully occupied sequons or missing the equivalent of one and sometimes two glycans across the molecule. This biosynthetic engineering approach enables the analysis of therapeutically important glycoproteins otherwise recalcitrant to analysis by native mass spectrometry.

With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.

Related Studies

No related studies