Sign in or register to see full information and data.

Publications / Sun 2023 (Can J Stat)

Overview

Publication

Can J Stat. 2023 Mar; 51(1):235-257.

PubMed ID: 36937899

Title

Estimation of conditional cumulative incidence functions under generalized semiparametric regression models with missing covariates, with application to analysis of biomarker correlates in vaccine trials

Authors

Sun Y, Heng F, Lee U, Gilbert PB

Abstract

This article studies generalized semiparametric regression models for conditional cumulative incidence functions with competing risks data when covariates are missing by sampling design or happenstance. A doubly-robust augmented inverse probability weighted complete-case (AIPW) approach to estimation and inference is investigated. This approach modifies IPW complete-case estimating equations by exploiting the key features in the relationship between the missing covariates and the phase-one data to improve efficiency. An iterative numerical procedure is derived to solve the nonlinear estimating equations. The asymptotic properties of the proposed estimators are established. A simulation study examining the finite-sample performances of the proposed estimators shows that the AIPW estimators are more efficient than the IPW estimators. The developed method is applied to the RV144 HIV-1 vaccine efficacy trial to investigate vaccine-induced IgG binding antibodies to HIV-1 as correlates of acquisition of HIV-1 infection while taking account of whether the HIV-1 sequences are near or far from the HIV-1 sequences represented in the vaccine construct.

With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.

Related Studies

No related studies