Overview
Publication
J Immunol. 2022 Aug 01; 209(3):526-534.
PubMed ID: 35803696
Title
Th2-biased transcriptional profile predicts HIV envelope-specific polyfunctional CD4+ T cells that correlated with reduced risk of infection in RV144 trial
Authors
Cohen KW, Tian Y, Thayer C, Seese A, Amezquita R, McElrath MJ, De Rosa SC, Gottardo R
Abstract
Ag-specific T cells play a critical role in responding to viral infections. In the RV144 HIV vaccine clinical trial, a rare subset of HIV-specific polyfunctional CD4+ T cells correlated with reduced risk of HIV-1 infection. Polyfunctional T cells are a subset of Ag-specific T cells that are able to simultaneously produce multiple effector cytokines. Little is known about what differentiates polyfunctional T cells from other vaccine-elicited T cells in humans. Therefore, we developed a novel live-cell multiplexed cytokine capture assay to identify, isolate, and transcriptionally profile vaccine-specific polyfunctional CD4+ T cells. We applied these methods to samples from subjects who received the RV144 vaccine regimen, as part of the HVTN 097 clinical trial. We identified two surface receptors (CD44 and CD82) upregulated on polyfunctional T cells and a Th2-biased transcriptional signature (IL-4, IL-5, and IL-13) that predicted the envelope-specific polyfunctional CD4+ T cell profiles that had correlated with reduced risk of HIV infection in RV144. By linking single-cell transcriptional and functional profiles, we may be able to further define the potential contributions of polyfunctional T cells to effective vaccine-elicited immunity.
With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.
Sign in to see full information about this publication and to download study data when available.