Sign in or register to see full information and data.

Publications / Han 2022 (Stat Med)

Overview

Publication

Stat Med. 2022 Jun 15; 41(13):2417-2426.

PubMed ID: 35253259

Title

Testing a global null hypothesis using ensemble machine learning methods

Authors

Han S, Fong Y, Huang Y

Abstract

Testing a global null hypothesis that there are no significant predictors for a binary outcome of interest among a large set of biomarker measurements is an important task in biomedical studies. We seek to improve the power of such testing methods by leveraging ensemble machine learning methods. Ensemble machine learning methods such as random forest, bagging, and adaptive boosting model the relationship between the outcome and the predictor nonparametrically, while stacking combines the strength of multiple learners. We demonstrate the power of the proposed testing methods through Monte Carlo studies and show the use of the methods by applying them to the immunologic biomarkers dataset from the RV144 HIV vaccine efficacy trial.

With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.

Related Studies

No related studies