Overview
Publication
J Exp Med. 2007 Dec 24; 204(13):3195-208.
PubMed ID: 18056287
Title
Multiple, conserved cryptic recombination signals in VH gene segments: Detection of cleavage products only in pro B cells
Authors
Davila M, Liu F, Cowell LG, Lieberman AE, Heikamp E, Patel A, Kelsoe G
Abstract
Receptor editing is believed to play the major role in purging newly formed B cell compartments of autoreactivity by the induction of secondary V(D)J rearrangements. In the process of immunoglobulin heavy (H) chain editing, these secondary rearrangements are mediated by direct V(H)-to-J(H) joining or cryptic recombination signals (cRSs) within V(H) gene segments. Using a statistical model of RS, we have identified potential cRSs within V(H) gene segments at conserved sites flanking complementarity-determining regions 1 and 2. These cRSs are active in extrachromosomal recombination assays and cleaved during normal B cell development. Cleavage of multiple V(H) cRSs was observed in the bone marrow of C57BL/6 and RAG2:GFP and microMT congenic animals, and we determined that cRS cleavage efficiencies are 30-50-fold lower than a physiological RS. cRS signal ends are abundant in pro-B cells, including those recovered from microMT mice, but undetectable in pre- or immature B cells. Thus, V(H) cRS cleavage regularly occurs before the generation of functional preBCR and BCR. Conservation of cRSs distal from the 3' end of V(H) gene segments suggests a function for these cryptic signals other than V(H) gene replacement.
With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.
Sign in to see full information about this publication and to download study data when available.
Related Studies
No related studies