Sign in or register to see full information and data.

Publications / Huang 2013 (Brief Bioinform)

Overview

Publication

Brief Bioinform. 2013 Jul; 14(4):391-401.

PubMed ID: 23193203

Title

Comparability and reproducibility of biomedical data

Authors

Huang Y, Gottardo R

Abstract

With the development of novel assay technologies, biomedical experiments and analyses have gone through substantial evolution. Today, a typical experiment can simultaneously measure hundreds to thousands of individual features (e.g. genes) in dozens of biological conditions, resulting in gigabytes of data that need to be processed and analyzed. Because of the multiple steps involved in the data generation and analysis and the lack of details provided, it can be difficult for independent researchers to try to reproduce a published study. With the recent outrage following the halt of a cancer clinical trial due to the lack of reproducibility of the published study, researchers are now facing heavy pressure to ensure that their results are reproducible. Despite the global demand, too many published studies remain non-reproducible mainly due to the lack of availability of experimental protocol, data and/or computer code. Scientific discovery is an iterative process, where a published study generates new knowledge and data, resulting in new follow-up studies or clinical trials based on these results. As such, it is important for the results of a study to be quickly confirmed or discarded to avoid wasting time and money on novel projects. The availability of high-quality, reproducible data will also lead to more powerful analyses (or meta-analyses) where multiple data sets are combined to generate new knowledge. In this article, we review some of the recent developments regarding biomedical reproducibility and comparability and discuss some of the areas where the overall field could be improved.

With the publicly available data in the CAVD DataSpace we can Learn about studies, products, assays, antibodies, and publications, Find subjects with common characteristics, Plot assay results across studies and years of research, and Compare monoclonal antibodies and their neutralization curves. Data are also accessible via DataSpaceR, our R API.

Related Studies

No related studies